
General Auto-Tuning Framework
[Developer’s Guide \

Ben Spencer
ben@mistymountain.co.uk

Last updated: 10th August 2011

Introduction

This guide provides an introduction to how the auto-tuner was de-
signed and developed. It should be helpful to anyone who wants to un-
derstand how the tuner works, whether to use it more effectively, or mod-
ify it to better suit your needs.

If you have any comments or questions about the tuner or this guide
then please feel free to get in touch.

Contents

Goals.. 1

Original Project Report .. 2

High-Level Description.. 2

A Tuning Run .. 4

File Listing... 5

Goals

The tuner is implemented in Python, and requires at least version 2.5.
Flexibility has been the overriding goal from the start. The programmer

can specify arbitrary shell commands which are used to compile, run and
score tests. This guide will give an overview of the high-level design of the
tuner: how it is split into modules and what each is designed to do, as well as
how they interact and together create the overall system.

I have tried to keep separate parts of the system independent of each
other, which has mostly succeeded, but some different parts do rely heavily
on the behaviour of others, even when they have been abstracted into sepa-
rate modules.

1

Original Project Report

I originally began work on the tuner as a third year project towards my under-
graduate degree. My project report1 (which is very long) contains some very
detailed information on the design and development of the system, especially
the optimisation algorithm, which I explain in detail and prove correct.

It is worth remembering that the report was based on an older version of
the tuner (0.11), so some parts are very different (notably tests are now run by
the Evaluator class, rather than ‘evaluation functions’) but the broad archi-
tecture of the system and many of the details (for example the optimisation
algorithm) remain the same.

High-Level Description

This section details the main classes providing the tuner’s core functionality:

VarTree

This class represents the variable trees which list the variables to be
tuned and which are independent of each other. This structure is de-
scribed (from a user’s perspective) in more detail in the User’s Guide
(doc/user.pdf).

The variables are supplied to the system in a nested braces format:

{A, B, {C, D}, {E, F}}

This says that the variables A and B are dependent on each other, and
on C, D, E and F , but that the sets {C, D} and {E, F} are independent.
Being independent means that these sets can be tuned separately: if an
optimal valuation of {C, D} is found at one setting of {E, F}, then this
will still be optimal for any other valuation of {E, F}.

This notation represents a tree of variables, where each node contains a
set of dependent variables and a set of subtrees which are all mutually
independent, but which depend on the ‘parent’ variables. The above
example would be represented:

{A,B}

{C,D} {E,F}

The VarTree class represents these trees. Each instance represents a
tree node and they are linked together to represent the entire tree. The
objects themselves do not require much extra information or function-
ality, they only contain a list of top-level variables and a list of subtrees.
The only methods provided are to flatten the tree into a list of variables.
All other operations on VarTree objects are provided as outside func-
tions which manipulate them (the most interesting being treeprint(),
which returns a string to display the tree structure in a terminal).

1http://people.maths.ox.ac.uk/~gilesm/op2/autotuning-2011-05-30.pdf

2

Optimisation

This class defines the optimisation algorithm used by the tuner. This
algorithm exploits variable independence (given by a VarTree) to re-
duce the number of tests required, while still being comprehensive. It
is parameterise by a VarTree Instance, listing the variables to tune and
their independence; a list of the possible values of each variable; and an
Evaluator instance, which handles the actual running of the tests.

The algorithm used is recursive, following the structure of the VarTree.
At leaf nodes, every possible combination of the variables is tested by
brute force. At branch nodes, the system recognises that each subtree is
independent, so optimises them separately. For each possible valuation
of the top-level variables, it recursively optimises the subtrees, one-by-
one. The score when each subtree is optimised gves the best possible
score for this setting of top-level variables. Once all the top-level valua-
tions have been tried, the one which gave the best score is chosen and
returned, along with it’s subtree-optimums.

Evaluator

This class is used by Optimisation to actually test different settings of
variables, and to keep a log of the tests, so the results can be looked up
as they are needed. The Evaluator is parameterised by the commands
required to compile and test a particular test, and how to calculate the
overall score if repeat tests are being run. This class performs all the
direct interaction with the shall and the tests which are run (e.g. reading
their output and checking their return code).

When the optimisation algorithm reaches a leaf node of the VarTree, it
submits a whole group of tests to the Evaluator at once. At the moment,
these tests are simply run in sequence, compiling one, testing it a num-
ber of times and then cleaning it; before moving on to the next. How-
ever, because thests are submitted in groups, there is scope for other im-
plementations of Evaluator to provide different evaluation strategies,
such as running tests interleaved with other tests, to reduce the effects
of inconsistent load on the system.

The log of tests performed is kept for two reasons. Firstly, it is used by
the optimiser to check the scores of tests which were submitted. Sec-
ondly, it is used at the end of testing to create the .csv log file listing all
tests performed.

3

A Tuning Run

This section describes a run of the progam from start to finish, showing how
the different parts of the system are connected and work together to provide
the final result.

The main program is tune.py. When the user runs this, they provide a
configuration file as an argument. The first step is that tune_conf.py is used
to read this configuration file (using the Python module ConfigParser) and
validate the settings.

Next, an instance of Evaluator is created, parameterised by the compila-
tion and testing commands, and the number of test repetitions.

An instance of Optimisation is created, and provided with the VarList

and list of possible values read from the configuration file, and the Evaluator

which it can use to run tests.
The system prints out a description of the information read from the con-

figuration file and the tuning it is about to perform, then begins the tuning.
The optimiser works recursively over the structure of the VarTree and at

each leaf node it submits a group of tests to the Evaluator. The Evaluator

runs each test in sequence, logging the results. If each test is to be repeated,
it runs them and calculates the overall score.

If the tests are to be timed by the system, the Evaluator does this timing
to determine a test’s score. If the tests use a custom figure-of-merit, then the
Evaluator captures their output and checks the final line for the score, which
is interpreted as a float.

The scores for each test are checked by the optimiser to find the best set-
ting of the variables at that leaf node, which it selects and continues opti-
mising the rest of the tree. As higher level variables are changed, it will be
necessary to return to the leaves and fin new optimal settings for the changes
in higher-level variables.

Once the optimisation is complete, the optimiser returns the best valua-
tion found, as well as the score for that valuation, and the number of tests
performed.

The log of testing is passed from the Evaluator to logging.py and written
out as a .csv file, which contains all the details of the testing.

The .csv log file can then be processed (by the user, not automatically)
with any of the log analysis utilities. These can be used to generate graphs
of the testing process, to show (for example) which variables had the greatest
effect.

4

File Listing

autotune

The tuner (A link to tuner/tune.py).

doc/

Documentation for the tuner.

dev.pdf

Developer’s documentation (this document).

tutorial.pdf

A Beginner’s Tutorial. Leads them through the setup and tuning of
the matrix-multiplication test case.

user.pdf

User’s guide. A more comprehensive reference detailing all the fea-
tures and abilities of the tuner.

examples/

Example programs to demonstrate the system’s use. Each comes with a
sample configuration file which can be used to tune it, and most have
some sample results from this tuning.

hello

A simple test case which compiles a ‘hello world’ program with dif-
ferent levels of compiler optimisation.

laplace3d

A CUDA test case. Compiles and tests a version of the laplace3d

CUDA example from Mike Giles’ CUDA programming course2.

looping

A simple test case where parameters control the number of loop
iterations performed in the program.

maths

A simple test case where parameters are summed using the expr

command. Demonstrates the use of a custom figure-of-merit.

matlab

A MATLAB program being tuned to determine the optimum level
of ‘strip-mining’ vectorisation.

matrix

A blocked matrix-matrix multiplication test case, which is tuned to
find the optimal block size.

README_Dev

Breif intro for developers, contains a file listing and change log.

README_User

Breif intro for users, mostly points to the proper documentation.

2http://people.maths.ox.ac.uk/gilesm/cuda/

5

tuner/

The Python source code for the tuner itself.

evaluator.py

Defines the Evaluator class, which controls how tests are evalu-
ated, handling all compilation, execution and timing of tests. It
also keeps a log of all tests performed, for use by the optimiser.

helpers.py

Provides several small helper functions, which are used elsewhere.

logging.py

Provides a function to output the testing log as a .csv file.

optimisation_bf.py

A brute force optimiser, OptimisationBF, implementing the same
methods as Optimisation. THis is used for testing, and in the sys-
tem’s self-demonstration.

optimisation.py

The optimisation algorithm. Defines the Optimisation class. This
class sets up and runs the recursive optimisation algorithm, which
exploits variable independence to reduce the number of tests that
must be performed.

output.py

Controls where the tuner’s output is sent. This can be printed to
the screen or saved to a file. Sets up the three output possiblities
all, short and full for the tuner to use.

test_evaluations.py

Provides a ‘dummy’ Evaluator class, FuncEvaluator. This imple-
ments the same interface as Evaluator, but uses an ‘artifical’ eval-
uation function to score each test, rather than running any shell
commands. This is used for the system’s self-demonstration, as
well as for testing. The evaluation function respects the variable
independence of the problem being solved.

testing.py

Checks Optimisation against OptimisationBF for a couple of dif-
ferent inputs. This is used as a demonstration of the system.

tune_conf.py

Reads settings from the config file and performs some validation.

tune.py

The main script. Reads the config file from the command line, sets
up and runs the optimisation and reports the final reusults to the
user.

vartree_parser.py

Defines a VarTreeparser, which was generated by wisent, a Python
parser-generator3. This is used by vartree.py to convert token
strings into parse trees. The language grammar was constructed so
that these parse trees have the same structure as the corresponding
VarTree, making the conversion simple.

3http://seehuhn.de/pages/wisent

6

vartree.py

Defines the VarTree class and several related functions. These in-
clude a parser for creating VarTree objects from strings and a func-
tion to print a VarTree in a tree representation.

utilities/

Contains utilities to analyse nd visualise the tuning results.

common.py

Some helper functions for reading in the CSV file.

csv_plot.m

A matlab script to draw plots.

output_gnuplot.py

Outputs a gnuplot script for plotting graphs.

output_screen.py

Displays a graph on screen with matplotlib (a Python graph plot-
ting library).

7

